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Abstract-We investigate the stability of a mechanical system with viscous damping when subjected
to nonconservative forces. The spectrum corresponding to the eigenvalue problem is proved to have
a symmetrical property, and therefore the zero frequency is always at least double. Here, we consider
the following important cases: where two linearly independent eigenfunctions correspond to zero
frequency, and where only one eigenfunction corresponds to zero frequency (bimodal and unimodal
cases). The full description of all possible variants of the system behaviour in the neighbourhood
of critical points is obtained. Examples are considered.

I. INTRODUCTION

The theory of stability of elastic systems mostly deals with conservative systems, i.e. with
the systems for which the theorem of energy conservation holds. However, there are
problems of practical importance where one should consider nonconservative elastic
systems. These problems are connected, for example, with the torsion of shafts, pipes
conducting media, panels exposed to the flow of fluids or gases, etc. Nicolai (1927) and
Ziegler (1951, 1952) were the first to attract the attention of scientists and engineers to the
nontrivial behaviour of such systems. A significant contribution to their study was made
by Bolotin (1963), Ziegler (1968) and Leipholz (I980a, b). These books are the most well
known in this field. When considering the behaviour of nonconservative systems one should
distinguish between two types of instability, the dynamic instability (flutter) and the static
instability (divergence). For the nonconservative systems, usual extremum principles like
Rayleigh's principle, do not take place. However, as shown by Leipholz (1974, 1980a, b)
and Prasad and Herrmann (1969, 1972), consideration of the adjoint problem allows us to
use a stationarity principle.

Ziegler (1952) discovered that small viscous damping can give rise to instability in a
nonconservative elastic system [see also Bolotin and Zinzher (1969), Herrmann and long
(1965) Nemat-Nasser and Herrmann (1966), Andreichikov and Yudovich (1974), Denisov
and Novikov (1978), and Miloslavsky (1986)]. The examples of viscous damping forces,
that stabilize or destabilize nonconservative systems were described in Banichuk et al.
(1990), Banichuk and Bratus (1990, 1992), and Bratus (1991). In this investigation an
important part is played by both adjoint problems and spectrum perturbation theory for
nonself-adjoint operators and matrices [see Vishik and Lyusternik (1960)]. Note that the
most interesting cases are connected with the appearance of multiple eigenvalues (fre­
quencies).

The purpose of this paper is to investigate the behaviour of a nonconservative system
with damping in the neighbourhoods of the critical points. We show that the spectrum
corresponding to the eigenvalue problem has a symmetrical property, therefore the zero
frequency is always at least double. Two important cases are considered, when the eigenvalue
problem has two linearly independent eigenfunctions (bimodal case) and a unique eigen­
function (unimodal case). By using the perturbation methods we have described completely
the system's behaviour in all cases, when the loading parameter steps over the critical value.
As an example, we apply our analysis to the stability problem for a pipe containing flowing
fluid.
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2. STATEMENT OF THE PROBLEM

Free oscillations of elastic bodies are described by the following equation with homo­
geneous boundary conditions [see for example Bolotin (1963), Ziegler (1968), and Leipholz
(1980a, b)]:

o 02 U
A(p)u(x, t) +B(p) ot u(x, t) + af2 (x, t) = 0, 0 < x < I, t > 0,

(Clj(p)u)x~o = 0, (C2 ;(P)U)x=1 = 0, j = 1,2, ... ,m.

(1)

(2)

Here, u(x, t) is the displacement, A(p), B(p) are linear differential operators (with
respect to the variable x) with real coefficients depending analytically on the real loading
parameter p E ~,

Clj(p), C 2j(p) (j= 1, 2, ... ,m) are linear differential operators of the orders not more
than 2m. The linear differential operators C Ij and C2j' j = 1, 2, ... , m, depend on p, like
A(p) and B(p). We assume in what follows that the boundary value problem (1), (2) is of
the Sturm type [see Naimark (1969)].

The eqns (1) and (2) describe a wide variety of elastic systems (beams, columns, arches,
plates, shells). The structure of the operator A(p) depends on the rigidity properties of the
elastic body as well as on the mode of its loading. The form of the operator B(p) is defined
by the influence of damping forces. The boundary condition (2) depends on how the body
is clamped and loaded on its boundaries. In problems related to mechanics, the operator
A (p) is represented, as a rule, in the form N +pS, where Nand S are linear differential
operators with real coefficients, the loading parameter p being included linearly. If the
system is conservative, then the operators Nand S are self-adjoint operators with respect
to boundary conditions (2), N being positive definite and S being negative definite. In the
case under consideration, the operator A(p) is not necessarily self-adjoint on the set of
functions that satisfy boundary condition (2).

When studying the stability of systems (1), (2) we assume that the solution can be
obtained in the form of a Fourier series in the variable tE [0, T]. Particular solutions to
this system are sought in the form

u(x, t) = vex) exp [iwt],

where vex) is the amplitude function, square integrable on the segment [0, I] and satisfying
boundary conditions (2), and i is an imaginary unit, w is the frequency.

By substituting the last expression into eqn (1) we obtain a relation between the
amplitude function vex) and the frequency w in the form of the eigenvalue problem with a
parameter p :

L(p)v(x) = A(p)v(x) +iwB(p)v(x) -w2v(x) = o. (3)

In what follows, we assume that the eigenvalue boundary value problem (3), (2) has a
discrete spectrum, i.e. for each value of the loading parameter p there exists a countable set
of solutions {wip) } j~ 1 •

Definition 2.1. The value Po of the loading parameter is called a critical value if at least
one of the eigenvalues wip),j = 1,2, ... , of problem (3), (2) satisfies the condition

and in a small neighbourhood of the point Po the inequality
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is fulfilled, for p # Po.
IfRe Wj(Po) = 0 and 1m wj(p) < 0 for P > Po, we say that the system loses its stability

in a static way (divergence), and if Re wj(Po) # 0, then the dynamical form of instability
takes place (flutter).

We will study the behaviour of the system (1), (2) in the static case (divergence) in the
neighbourhood of critical points.

3. SYMMETRICAL PROPERTY OF FREQUENCIES

Theorem 3.1. Let,wj = Tj+iaj, j = 1, 2, 3, ... be the eigenvalues of the boundary
problem (3), (2) for pER Then this problem also has the eigenvalues wj = - T j+ia j, i.e. the
spectrum is symmetrical with respect to the imaginary axis Imwj.

Proof Consider the equation

A(p)w(x) -w2w(x) = 0 (4)

together with boundary condition (2) for the function w(x). From the assumption on the
character of the spectrum, using the results of Michailov (1962) we conclude that the system
of eigenfunctions and their joint functions, i.e. {Wj(x)}j~ I> form the basis, in the sense of
Riesz in the space of square integrable functions on the segment [0, Il. We will seek the
approximate solution of the boundary value problem (I), (2) in the form of finite expansion
in the system {wix)}'i~ I> i.e.

n

vn(x) = L CjWix),
j~ I

where the coefficients Cj are complex numbers, in the general case.
Denote by W n the corresponding approximation for the frequencies W of the problem

(3), (2). Substituting vn(x) into (4) and multiplying the resultant equation scalarly by the
functions wj(x), j = 1, 2, ... , n, we get the following linear system of equations for the
coefficients Cj :

where

n

L ci<5sj +iwnXsj-w';YSj) = 0, s = 1,2, ... , n,
j~ I

(5)

Here and below, the brackets denote the scalar product in the space ofsquare integrable
functions. Note that the values <5Sj' Xsj and Ysj are real, since the functions wix) are real.

For solvability of the system (5) it is necessary that the following determinant is equal
to zero:

(6)

here Wn = Tn+ian.
Since all terms in eqn (6) are real, except for iTn and iTnan, the following equality holds:

where PZ(z, an, p), k = 1, 2 are polynomials in z and an with the coefficients depending on
p. Iffor some pE IR eqn (6) has a solution Wn = Tn+ian, (Tn # 0) then for the same p,
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By virtue of evenness of the polynomials P~ with respect to z = r;, eqn (6) with the
same p and an also has the solution w~ = -rn+ian. Since the solution vn(x) converges as
n -+ 00 to the solution of the boundary value problem (3), (2) in the norm of the space of
square integrable functions [see Strang and Fix (1973)] and the limit ofa sequence of even
functions is an even function we get the assertion of Theorem 3.1.

Corollary 3.1. Suppose that for some Po E ~ there exists the zero eigenvalue w(Po) = 0
of the problem (3), (2) and the problem

A(po)v(x) = 0, (7)

with the boundary condition (2), has a unique solution. Also suppose that for a sufficiently
small neighbourhood of the point Po the inequality Re w(p) =I' 0 is fulfilled, where w(p) is
such an eigenvalue of the problem (3), (2) that w(Po) = O. Then the zero eigenvalue
w(Po) = 0 is a double eigenvalue of the problem (3), (2).

Proof For sufficiently small p = Po =I' 0 we have w(p) = rep) + ia(p), where rep) =I' 0
for p =I' Po. On the other hand, for the same value of the parameter p the problem (3), (2)
has symmetrical eigenvalues w'(p) = -r(p)+ia(p). By virtue of the continuity of the
eigenvalues with respect to p we get rep) -+ 0 and a(p) -+ 0 as p -+ Po. Therefore, the zero
eigenvalue w(Po) is a double eigenvalue of the problem (3), (2).

4. SERIES EXPANSIONS

Consider the increment of the parameter p at the point Po such that w(Po) = 0:
p, = Po + ex, where ex is a sufficiently small positive number. All eigenvalues and eigen­
functions of the boundary problem (3), (2) will have some increments too. Vishik and
Lyusternik (1960) have shown that if s is the order of the multiple eigenvalue w(Po) and k
is the number of linearly independent eigenfunctions that correspond to this eigenvalue,
then the expansions of the eigenvalues w(p,) and corresponding eigenfunction v,(x) are to
be made in fractional powers of exk

/
s
• Therefore, if the assumptions of Corollary 3.1 are

fulfilled then the expansions of the value w(p,) and corresponding eigenfunction v,(x) are
made in powers of ex 1/2 :

(8)

(9)

Here, vo(x) is the solution of problem (7) with boundary conditions (2) and !J, 1] are some
coefficients.

Without loss of generality we consider that the eigenfunction v,(x) is normalized in
the following way:

(v,(x), vo(x) = 1. (l0)

The next step is to arrange the coefficients for each power of ex into groups. Since the
equality must be satisfied for arbitrary values of ex, the coefficients of powers of ex must be
equal to zero.

Introducing the notation

we get:

o 0 0 (d )\A = A(po), B = B(po), Ap = dexA(P+ex ).~o (11)
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AOvo(X) = 0,

AOVl(X) = -ij-tBovo(x),

A°V2(X) = - A~vo(x) -ij-tBOvt (x) -i11BOvo(X) + j-t2 VO (X).
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(12a)

(12b)

(12c)

If the boundary value problem (12a), (2) has two linearly independent solutions v~(x)

and v~(x), the expansion for w(Po) and vo(x) can be made in integer powers of (1. For
example, this takes place if the order of the multiple zero eigenvalue is exactly two [see
Vishik and Lyusternik (1960) and Kato (1966)]. In any case we can conclude that the
expansion contains powers of (12/s, where s is the order of the multiple zero eigenvalue. Let
us consider the first case (s = 2), then we get the following expansions:

(13)

(14)

where

(15)

Cb C2 are constants.
If we arrange coefficients for each power of (1 into groups we get eqn (12a) and the

following equation:

(16)

5. UNIMODAL DOUBLE EIGENVALUE

Consider the boundary value problem, adjoint to the boundary value problem (3),
(2) :

(CTip)z)x=o, (C1(p)z)x=t =0, j= 1,2, ... ,m.

(17)

(18)

Let us denote the solution to the adjoint problem for critical value Po by zo(x). As
mentioned above, this case corresponds to the zero eigenvalue w(Po) = 0. We know that
the following equality holds [see Vishik and Lyusternik (1960)]:

(vo(X), zo(x» = 0, (19)

where vo(x) is the solution of the boundary value problem (12a), (2). Equation (13) has a
solution if and only if its right-hand side is orthogonal to the function zo(x). Then we get

(20)

If (BOvo, zo) = 0, then eqn (12b) is always solvable. Therefore there exists a real operator
G(po) = GO (Green's function) such that

Denote

M = (A~vo, zo)/(BOvo, zo),

N = - (A~vo, zo)/(BoGoBOvo, zo).

(21)

(22a)

(22b)
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Theorem 5.1. Suppose that for p = Po, only one eigenfunction, vo(x), corresponds to the
double zero eigenvalue of the boundary value problem (3), (2), and let zo(x) be the
eigenfunction of the adjoint boundary value problem (17), (18).

If (BOvo, zo) #- °and M < 0, then the system (I), (2), being asymptotically stable,
becomes unstable when the parameter p exceeds the critical value Po and the loss of stability
has a static character (divergence). If M> 0, then the system (1), (2), being statically
unstable, becomes asymptotically stable. For M = °the following representation takes
place:

If (BOvo, zo) = °and N < 0, then for sufficiently small P-Po > °the system (1), (2)
becomes unstable in a statical manner. If N ~ 0, then the double zero eigenvalue splits into
two different eigenvalues so that

Proof If (Bovo, zo) #- 0, then eqn (20) implies that JJ. = 0. Using eqn (12b) and
condition (10) we get VI (x) = 0. Equation (12c) has the following form:

The condition of solvability results in the following equality:

Taking into account the notations (20) and assuming,., = iM we get the first assertion
of Theorem 5.1. Here we have also used the fact that the terms A~ change their signs, as
the parameter changes its sign. Therefore, the case of M < °(> 0) turns into the case of
M> °(< 0), as the parameter p passes through the critical value Po.

If (BOvo, zo) = °then the equality (21) takes place. Substituting it into eqn (14) and
multiplying the resultant relationship scalarly by the eigenfunction zo(x) of the adjoint
boundary value problem (18), (19) we get JJ.2 = N, where Nis defined by (22b). The second
part of the assertion of Theorem 5.1 is proved analogously.

Corollary 5.1. The results of Theorem 5.1. hold if for p = Po the boundary problem
(12a), (2) is conservative and therefore, the operator A Ois a self-adjoint. The function zo(x)
must be replaced with the function vo(x), and eqn (22b) is obtained in the form

(23)

since in this case the equality (19) is not valid [see Vishik and Lyusternik (1960)].
The results are illustrated in Figs 1 and 2. The arrows show the displacement of the

eigenvalues as the loading parameter passes through the critical value Po.

Reu4... .-::o~---_

Fig. 1. The case (BOvo, Zo) #- 0, M < O.
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Re~

Fig. 2. The case (Bovo, zo) = 0, N < O.
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Example 5.1. The stability problem for the pipe through which fluid is flowing leads
to the following boundary value problem [see for example Panovko and Gubanova (1979)] :

d 4v(x) 2 d2v(x) . dv 2
~+p~+2.fJpwdx-wv(x)=0, O<x<l, (24a)

(24b)

where p is the flow velocity, fJ > 0 is a constant, w is the frequency of bending oscillation
of the pipe. According to the notation of Sections 2, 3 and 4 we have

A(p)v(x) = v(lY)(X)+p2V"(X), B(p)v(x) = 2fJpv'(x),

Ap(p)v(x) = 2pv"(x).

IfPn = nn, n = 1,2, ... , we get Wn = w(Pn) = 0, v~(x) = J2 sin nnx. For these values
of Pn and Wn, the boundary value problem (24a), (24b) is self-adjoint. From Theorem 3.1
we conclude that for critical values Pn = nn the zero eigenvalues are double. Since there
exists only one eigenfunction, we have a unimodal case here.

It is easy to verify that

(B(Pn)v~,v~)= 2fJ(nn) 2f sin nnx cos nnx dx = O.

Therefore, p.2 = N, where N is defined by eqn (23). Let us find the function v'l (x)
satisfying eqn (l2b). To do this we have to solve the following boundary value problem:

The solution has the form

n () • (;;2 p.fJ (. 2 2 2 )
VI X =.v''''- xsmnnx+ -Cnx+ -coxnnx- - ,

n nx nx nn

where n = 1,2, ... , Cn = 0 for n = 2k, and Cn = 1 for n = 2k-l, k = 1,2, ....
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Now we write down eqn (12c) :

A. S. BRATUS

with the same boundary condition as before. Multiplying this equation by the function
v'O(x) = J2 sin nnx and integrating the resultant equation from 0 to 1 we get the following
formula for N from eqn (23) :

Note that for any n = 1, 2, ... the values 3-8C;/(nn)2 are positive. For n = 2k and
P< (3n) - 1/2 as well as for n = 2k -1 and P< nn(3n2n2- 8) - 1, the zero eigenvalue for
p > nn splits into two different eigenvalues, one of which has a negative imaginary part
(divergence). In other cases (P> nn(3n 2n2-8)-I), the zero eigenvalue splits into two
eigenvalues, both of them being real in the first approximation in terms of powers of Ct.. In
this case we say that conditional stabilization takes place. To investigate the exact behaviour
of the system an additional treatment is needed involving the terms Ct. 3/2.

In particular, for PI = nand P< 0.67582, the static type ofloss of stability takes place.
If P> 0.67582, then for p > n the stabilization takes place in the conditional sense.

6. BIMODAL DOUBLE EIGENVALUE

Now consider the case of two linearly independent eigenfunctions v~(x) and vi(x)
corresponding to the double zero eigenvalue. Let z~(x) and zi(x) be the corresponding
eigenfunctions of the adjoint problem (17), (18). Without loss of generality we can assume
that

where {)ij is Kronecker's delta.
Let us introduce the following notation:

. . o· .
Ct.ij = (ApYo, z"6), Pij = (B Yo, z"6), j = 1,2, (25a)

(25b)

Theorem 6.1. Suppose that for p = Po, two linearly independent eigenfunctions, y~(x)

and Yi(x), correspond to the double zero eigenvalue of the boundary problem (3), (2) and let
z~(x) and z~(x) be the respective eigenfunctions of the adjoint problem (17), (18).

If the inequalities

(26)

are fulfilled, then for sufficiently small p - Po > 0 the system (I), (2) is asymptotically stable.
If the inequalities (26) are not fulfilled, then for the above-mentioned value of the

parameter p, the dynamical destabilization (flutter) occurs, when 4a I a3 + a~ < 0, and static
destabilization (divergence), takes place when 4ala3+a~ ;;:,: O.

Proof Consider eqn (16). Multiplying this equation by the eigenfunctions z~(x) and
z~(x) of the adjoint boundary value problem (17), (18) and then integrating the result from
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ReW",

o to I and using the notation of (25a), (25b) we get the system of linear homogeneous
equations with respect to the constants CI and Cz from eqn (15) :

CI«()(II +i/1PII)+cz«()(zl +i/1Pzl) = 0,

CI«()(12+ i/1P12) +CZ«()(22 +i/1Pzz) = O.

For the nontrivial solution to this system to exist, it is necessary that the determinant
is equal to zero. This condition gives the following equation for /1 from expansion (13) :

(27)

where a\> az, a3 are defined by eqn (25b). Assuming A. = i/1 and applying the Routh­
Hurwitz criterion we have the situation where, if the conditions (26) are fulfilled then
imaginary parts of the roots of eqn (27) will be strictly positive. Therefore for sufficiently
smallp-po > 0 the initial system (1), (2) is asymptotically stable. If the inequalities are not
valid and 4ala3+a~ < 0 the roots of eqn (27) have nonzero real parts and their imaginary
parts are negative. This means that the character of destabilization is dynamical. For
4ala3+a~ ~ 0 the destabilization has a static character.

This reasoning can be illustrated by Figs 3 and 4.
Remark 6.1. If al = az = 0 and a3 # 0, then eqn (27) is not valid. This means that the

expansions (13), (14) do not hold either. In this case the order of the multiple zero eigenvalue
can be at least equal to four, and, therefore, expansions (8), (9) and the eqns (12a, b, c)
take place.

Example 6.1. Consider the stabilization problem for a pipe that lies on an elastic
support and carries flowing fluid. The corresponding boundary value problem is given by
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O<x<l-d, (2Sa)

d 2v
v(O) = dx2 (0) = 0, (2Sb)

where P, /3 are defined in eqn (24a), k 2 is a constant.
If k 2 = 4n~, then for p~ = 5n 2 we .have w(Po) = O. The corresponding eigenfunctions

are v~(x) = .J2 sin nx and v~(x) = .J2 sin 2nx. The boundary value problem (2Sa, b) is
self-adjoint for the indicated Po and w(Po) = O. Therefore z~(x) = /0 (x), i = I, 2. Using
the notation (25a) and (25b) we get

0(11 = -2.J5n 3
, 0(12 = 0(21 = 0, 0(22 = -Sn 3.J.s,

/311 = 0, /312 = s.J5/3/3, /321 = -s.J5/3/3, /322 = O.

Therefore,

The inequalities (26) are not valid. Since in this case 4a I a3 + a~ > 0, the static desta­
bilization takes place for any /3 > 0 and sufficiently small p2 - 5n 2 > O.
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